162 research outputs found

    Contexts Paired with Junk Food Impair Goal-Directed Behavior in Rats: Implications for Decision Making in Obesogenic Environments.

    Full text link
    The high prevalence of obesity and related metabolic diseases calls for greater understanding of the factors that drive excess energy intake. Calorie-dense palatable foods are readily available and often are paired with highly salient environmental cues. These cues can trigger food-seeking and consumption in the absence of hunger. Here we examined the effects of palatable food-paired environmental cues on control of instrumental food-seeking behavior. In Experiment 1, adult male rats received exposures to one context containing three "junk" foods (JFs context) and another containing chow (Chow context). Next, rats were food-deprived and trained to perform instrumental responses (lever-press) for two novel food rewards in a third, distinct context. Contextual influences on flexible control of food-seeking behavior were then assessed by outcome devaluation tests held in the JF, chow and training contexts. Devaluation was achieved using specific satiety and test order was counterbalanced. Rats exhibited goal-directed control over behavior when tested in the training and chow-paired contexts. Notably, performance was habitual (insensitive to devaluation) when tested in the JF context. In Experiment 2 we tested whether the impairment found in the JF context could be ameliorated by the presentation of a discrete auditory cue paired with the chow context, relative to a second cue paired with the JF context. Consistent with the results of Experiment 1, the devaluation effect was not significant when rats were tested in the JF context with the JF cue. However, presenting the chow cue increased the impact of the devaluation treatment leading to a robust devaluation effect. Further tests confirmed that performance in the chow context was goal-directed and that sensory-specific satiety in the JF context was intact. These results show that environments paired with palatable foods can impair goal-directed control over food-seeking behavior, but that this deficit was improved by a cue paired with chow. This has promising implications for assisting individuals in controlling their eating behavior in environments designed to dysregulate it

    Engram size varies with learning and reflects memory content and precision

    Full text link
    Memories are rarely acquired under ideal conditions, rendering them vulnerable to profound omissions, errors, and ambiguities. Consistent with this, recent work using context fear conditioning has shown that memories formed after inadequate learning time display a variety of maladaptive properties, including overgeneralization to similar contexts. However, the neuronal basis of such poor learning and memory imprecision remains unknown. Using c-fos to track neuronal activity in male mice, we examined how these learning-dependent changes in context fear memory precision are encoded in hippocampal ensembles. We found that the total number of c-fos-encoding cells did not correspond with learning history but instead more closely reflected the length of the session immediately preceding c-fos measurement. However, using a c-fos-driven tagging method (TRAP2 mouse line), we found that the degree of learning and memory specificity corresponded with neuronal activity in a subset of dentate gyrus cells that were active during both learning and recall. Comprehensive memories acquired after longer learning intervals were associated with more double-labeled cells. These were preferentially reactivated in the conditioning context compared with a similar context, paralleling behavioral discrimination. Conversely, impoverished memories acquired after shorter learning intervals were associated with fewer double-labeled cells. These were reactivated equally in both contexts, corresponding with overgeneralization. Together, these findings provide two surprising conclusions. First, engram size varies with learning. Second, larger engrams support better neuronal and behavioral discrimination. These findings are incorporated into a model that describes how neuronal activity is influenced by previous learning and present experience, thus driving behavior.SIGNIFICANCE STATEMENT Memories are not always formed under ideal circumstances. This is especially true in traumatic situations, such as car accidents, where individuals have insufficient time to process what happened around them. Such memories have the potential to overgeneralize to irrelevant situations, producing inappropriate fear and contributing to disorders, such as post-traumatic stress disorder. However, it is unknown how such poorly formed fear memories are encoded within the brain. We find that restricting learning time results in fear memories that are encoded by fewer hippocampal cells. Moreover, these fewer cells are inappropriately reactivated in both dangerous and safe contexts. These findings suggest that fear memories formed at brief periods overgeneralize because they lack the detail-rich information necessary to support neuronal discrimination

    Maladaptive Properties of Context-Impoverished Memories.

    Get PDF
    The context in which sudden fearful events occur can be poorly encoded into memory. Yet, the consequences of the resulting context-impoverished memories remain unknown. We demonstrate that restricting the time available for context encoding during contextual fear conditioning causes maladaptively overgeneralized and inextinguishable fear. However, post-conditioning context exposure enables further context encoding through hippocampal reconsolidation-dependent memory updating. Updating in the conditioning context alleviates overgeneralization and restores capacity for extinction. However, updating in a similar safe context erroneously shifts fear from the dangerous to the safe context. We argue that these phenomena can be explained by uncertainty about where events occurred. Moreover, we show that a hippocampal-neocortical neurocomputational model based on this assumption successfully simulates and explains our observations. These findings reveal that context-impoverished memories are maladaptive and can be improved or distorted after recall, with implications for basic memory theory, memory distortion, and treatment of disorders like post-traumatic stress disorder

    The motivational drive to natural rewards is modulated by prenatal glucocorticoid exposure

    Get PDF
    Exposure to elevated levels of glucocorticoids (GCs) during neurodevelopment has been identified as a triggering factor for the development of reward-associated disorders in adulthood. Disturbances in the neural networks responsible for the complex processes that assign value to rewards and associated stimuli are critical for disorders such as depression, obsessive–compulsive disorders, obesity and addiction. Essential in the understanding on how cues influence behavior is the Pavlovian–instrumental transfer (PIT), a phenomenon that refers to the capacity of a Pavlovian stimulus that predicts a reward to elicit instrumental responses for that same reward. Here, we demonstrate that in utero exposure to GCs (iuGC) impairs both general and selective versions of the PIT paradigm, suggestive of deficits in motivational drive. The iuGC animals presented impaired neuronal activation pattern upon PIT performance in cortical and limbic regions, as well as morphometric changes and reduced levels of dopamine in prefrontal and orbitofrontal cortices, key regions involved in the integration of Pavlovian and instrumental stimuli. Normalization of dopamine levels rescued this behavior, a process that relied on D2/D3, but not D1, dopamine receptor activation. In summary, iuGC exposure programs the mesocorticolimbic dopaminergic circuitry, leading to a reduction in the attribution of the incentive salience to cues, in a dopamine-D2/D3-dependent manner. Ultimately, these results are important to understand how GCs bias incentive processes, a fact that is particularly relevant for disorders where differential attribution of incentive salience is critical.We thank Pedro Morgado for discussions and help in the technical aspects of PIT procedure. This project was supported by a grant of Institute for the Study of Affective Neuroscience (ISAN) and by Janssen Neuroscience Prize. CS-C, SB, MMC and AJR are recipients of Fundacao para a Ciencia e Tecnologia (FCT) fellowships (CS-C: SFRH/BD/51992/2012; SB: SFRH/BD/89936/2012; MMC: SRFH/BD/51061/2010; AJR: SFRH/BPD/33611/2009)

    Deep Brain Stimulation Reveals a Dissociation of Consummatory and Motivated Behaviour in the Medial and Lateral Nucleus Accumbens Shell of the Rat

    Get PDF
    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa

    Change in hippocampal theta oscillation associated with multiple lever presses in a bimanual two-lever choice task for robot control in rats.

    Get PDF
    Hippocampal theta oscillations have been implicated in working memory and attentional process, which might be useful for the brain-machine interface (BMI). To further elucidate the properties of the hippocampal theta oscillations that can be used in BMI, we investigated hippocampal theta oscillations during a two-lever choice task. During the task body-restrained rats were trained with a food reward to move an e-puck robot towards them by pressing the correct lever, ipsilateral to the robot several times, using the ipsilateral forelimb. The robot carried food and moved along a semicircle track set in front of the rat. We demonstrated that the power of hippocampal theta oscillations gradually increased during a 6-s preparatory period before the start of multiple lever pressing, irrespective of whether the correct lever choice or forelimb side were used. In addition, there was a significant difference in the theta power after the first choice, between correct and incorrect trials. During the correct trials the theta power was highest during the first lever-releasing period, whereas in the incorrect trials it occurred during the second correct lever-pressing period. We also analyzed the hippocampal theta oscillations at the termination of multiple lever pressing during the correct trials. Irrespective of whether the correct forelimb side was used, the power of hippocampal theta oscillations gradually decreased with the termination of multiple lever pressing. The frequency of theta oscillation also demonstrated an increase and decrease, before and after multiple lever pressing, respectively. There was a transient increase in frequency after the first lever press during the incorrect trials, while no such increase was observed during the correct trials. These results suggested that hippocampal theta oscillations reflect some aspects of preparatory and cognitive neural activities during the robot controlling task, which could be used for BMI

    Quantifying Individual Variation in the Propensity to Attribute Incentive Salience to Reward Cues

    Get PDF
    If reward-associated cues acquire the properties of incentive stimuli they can come to powerfully control behavior, and potentially promote maladaptive behavior. Pavlovian incentive stimuli are defined as stimuli that have three fundamental properties: they are attractive, they are themselves desired, and they can spur instrumental actions. We have found, however, that there is considerable individual variation in the extent to which animals attribute Pavlovian incentive motivational properties (“incentive salience”) to reward cues. The purpose of this paper was to develop criteria for identifying and classifying individuals based on their propensity to attribute incentive salience to reward cues. To do this, we conducted a meta-analysis of a large sample of rats (N = 1,878) subjected to a classic Pavlovian conditioning procedure. We then used the propensity of animals to approach a cue predictive of reward (one index of the extent to which the cue was attributed with incentive salience), to characterize two behavioral phenotypes in this population: animals that approached the cue (“sign-trackers”) vs. others that approached the location of reward delivery (“goal-trackers”). This variation in Pavlovian approach behavior predicted other behavioral indices of the propensity to attribute incentive salience to reward cues. Thus, the procedures reported here should be useful for making comparisons across studies and for assessing individual variation in incentive salience attribution in small samples of the population, or even for classifying single animals

    Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Get PDF
    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.A special acknowledgement to Karl Deisseroth from Stanford University, for providing viral constructs and for comments on the manuscript, and to Alan Dorval from the University of Utah, for providing mouse strains. Thanks to Luis Jacinto, Joao Oliveira and Joana Silva that helped in some technical aspects of the experiments. C.S.-C., B.C., A.D.-P. and S.B. are recipients of Fundacao para a Ciencia e Tecnologia (FCT) fellowships (SFRH/BD/51992/2012; SFRH/BD/98675/2013; SFRH/BD/90374/2012; SFRH/BD/89936/2012). A.J.R. is a FCT Investigator (IF/00883/2013). This work was co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). Part of the work was supported by the Janssen Neuroscience Prize (1st edition).info:eu-repo/semantics/publishedVersio

    Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior.

    Get PDF
    Feeding behavior is governed by homeostatic needs and motivational drive to obtain palatable foods. Here, we identify a population of glutamatergic neurons in the paraventricular thalamus of mice that express the glucose transporter Glut2 (encoded by Slc2a2) and project to the nucleus accumbens. These neurons are activated by hypoglycemia and, in freely moving mice, their activation by optogenetics or Slc2a2 inactivation increases motivated sucrose-seeking but not saccharin-seeking behavior. These neurons may control sugar overconsumption in obesity and diabetes

    The role of impulsivity in the aetiology of drug dependence: reward sensitivity versus automaticity

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © The Author(s) 2011.RATIONALE: Impulsivity has long been known as a risk factor for drug dependence, but the mechanisms underpinning this association are unclear. Impulsivity may confer hypersensitivity to drug reinforcement which establishes higher rates of instrumental drug-seeking and drug-taking behaviour, or may confer a propensity for automatic (non-intentional) control over drug-seeking/taking and thus intransigence to clinical intervention. METHOD: The current study sought to distinguish these two accounts by measuring Barratt Impulsivity and craving to smoke in 100 smokers prior to their completion of an instrumental concurrent choice task for tobacco (to measure the rate of drug-seeking) and an ad libitum smoking test (to measure the rate of drug-taking-number of puffs consumed). RESULTS: The results showed that impulsivity was not associated with higher rates of drug-seeking/taking, but individual differences in smoking uptake and craving were. Rather, nonplanning impulsivity moderated (decreased) the relationship between craving and drug-taking, but not drug-seeking. CONCLUSIONS: These data suggest that whereas the uptake of drug use is mediated by hypervaluation of the drug as an instrumental goal, the orthogonal trait nonplanning impulsivity confers a propensity for automatic control over well-practiced drug-taking behaviour.MR
    corecore